
Introduction to NLP: 

NLP is a subset of AI deals with the interaction between computers and human 
(natural) languages. It helps machines understand, interpret, and generate human 
language. NLP applications include machine translation, sentiment analysis, text 
summarization, and chatbots. NLP techniques that involves analyzing the 
structure, meaning, and context of the data. 

Uses of NLP: 

1. Language Translation 

o Example: Google Translate, Microsoft Translator 

o Converts text or speech from one language to another. 

2. Chatbots and Virtual Assistants 

o Example: Siri, Alexa, ChatGPT 

o Helps in human-like conversations and answering questions. 

3. Text Summarization 

o Automatically shortens long documents while keeping the main 
idea. 

4. Sentiment Analysis 

o Used in social media, reviews, etc., to understand emotions 
(positive, negative, neutral). 

5. Speech Recognition 

o Converts spoken language into text. 

o Example: Voice typing, voice search. 

6. Spam Detection 

o Filters out spam emails by understanding the content. 

7. Search Engines 

o Improves search accuracy by understanding the user’s query. 

8. Text Classification 

o Categorizes documents, emails, or news articles automatically. 

 



Grammar-based LM: 

Grammar-based language modelling is a method in NLP where rules of grammar 
(like subject-verb-object, tenses, etc.) are used to build or analyze sentences. 
Instead of just predicting the next word based on probability it uses the structure 
of the language how sentences are formed to understand or generate text. 

A language model is a machine learning model LM that predicts upcoming words. 
More formally, a language model assigns a probability to each possible next word. 
Language models can also assign a probability to an entire sentence. 

How Grammar-Based LMs Work: 

1. Define Grammar Rules: 

The process begins with defining a set of grammar rules that specify how words 
and phrases can be combined to form valid sentences. 

 Sentence → Noun Phrase + Verb Phrase 
 Noun Phrase → Article + Noun 
 Verb Phrase → Verb + Noun Phrase 
 Article → "the", "a" 
 Noun → "boy", "girl", "apple" 
 Verb → "eats", "sees" 

2. Parse Input Text: 

The input text is parsed using the defined grammar rules. This involves 
identifying the different parts of the sentence and their relationships. 

Ex: "The boy / eats / the apple" 

3. Apply Rules for Generation: 

The rules are then applied to generate new text that sticks to the grammar or to 
interpret the meaning of existing text. 

 “ A girls sees the boy” 
 “ The boy sees a girl” 
 “ The girl eats the apple” 

4. Evaluate Output: 

The generated text is evaluated based on its grammaticality and coherence.  

 "The boy eats an apple" → grammatically correct and clear meaning. 
 "Eats boy the apple" → wrong word order, breaks grammar rules. 



Types of Grammar Models 

 Context-Free Grammar (CFG) – Most common; rules don’t depend on context. 
 Dependency Grammar – Focuses on relationships between words (like verb-object). 
 Phrase Structure Grammar – Breaks sentences into phrases (noun phrase, verb 

phrase). 
 Feature-based Grammar – Adds grammatical features like number, gender, tense. 

Uses of Grammar-Based Models 

 Syntax Checking – Ensures sentence is grammatically correct. 
 Machine Translation – Helps translate sentences with correct structure. 
 Speech Recognition – Understands spoken words in correct order. 
 Text Generation – Generates well-formed, grammatically correct sentences. 

Advantages: 

 Provides high grammatical accuracy. 
 Ensures structured and logical sentence formation. 
 Easy to explain and debug (rules are visible and editable). 
 Good for low-resource languages (when training data is limited). 

Disadvantages: 

 Rule creation is time-consuming and requires grammatical knowledge. 
 Not suitable for slang or informal text (like social media). 
 Doesn’t adapt to new language patterns automatically. 
 Not scalable for very large datasets or dynamic language use. 

 

 

 

 

 

 

 

 

 



Statistical LM: 

Statistical Language Modelling, is the development of probabilistic models that 
can predict the next word in the sequence given the words that precede it. 

A statistical language model learns the probability of word occurrence based on 
examples of text. Simpler models may look at a context of a short sequence of 
words, whereas larger models may work at the level of sentences or paragraphs. 
Most commonly, language models operate at the level of words. 

Types of statistical LM 

1. N-gram: 

This is one of the simplest approaches to language modelling. Here, a probability 
distribution for a sequence of ‘n’ is created, where ‘n’ can be any number and 
defines the size of the gram. There are different types of N-Gram models such as 
unigrams, bigrams, trigrams, etc.  

Unigram: 

A unigram model is the simplest type of statistical language model. It treats each 
word in a sentence as independent of the words before or after it. This means the 
model doesn't consider the order of words it only looks at the individual words 
and how often they appear in a large text. 

Example: 
Sentence: "I like ice cream" 
Unigrams: "I", "like", "ice", "cream" 

Bigram: 

A bigram model looks at two words at a time to understand how likely a word is 
to follow another. It takes word order into account, unlike the unigram model. It 
calculates the probability of a word based on the word that came before it. 

Example: 
Sentence: "I like to eat " 
Bigrams: "I lke", "like to", "to eat" 

Trigram: 

A trigram model takes it a step further by looking at three words at a time. It 
predicts the next word based on the previous two words. This gives it a better 
understanding of sentence structure and context than unigram and bigram models. 

 



Example  

Sentence: "She is reading books" 
Trigrams: "She is reading", "is reading books" 

2. Continuous space: 

In this type of statistical model, words are arranged as a non-linear combination 
of weights in a neural network. The process of assigning weight to a word is 
known as word embedding. This type of model proves helpful in scenarios where 
the data set of words continues to become large and include unique words.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Regular Expressions: 

 Regular expression is also called as Regex. 
 Regular expression is a sequence of characters that define a search pattern. 
 It is used for pattern matching or string matching. 
 Especially it is used for email validation, phone number validation. So if 

we want password contains a lowercase alphabets and uppercase alphabets 
and one special character whatever will those we can added using regular 
expression. 

Certain rules for Regex: 

[abc] – it is basically means anything a, b or c 

[^ abc] – it basically any character except a,b,c 

[a - z] – it basically any character a-z 

[A - Z] – it is basically any character A-Z 

[0 - 9] – it basically any digit 0 to 9 

[a-z, A-Z] – it basically a to z, A to Z 

Quantifiers: 

[   ]? – what are written inside or rule inside it will occur zero or one time.  

[   ]+ - what are written inside it will one time or more times. 

[   ]* - what are written inside it will zero or more times. 

[   ]{n} – what are written inside it will occur n times. 

[   ]{n, } – what are written inside it will occur n or more times. 

[   ] {y,z} – what are written it will occur at least y times and less than z times. 

^ caret – it tells computer that must start at beginning of the string or line. 

$ dollar – it tells computer that must occur at end of the string or line. 

\ backslash – it is used actual ‘+’,’-‘, ‘.’etc characters add a backslash before 
the character this tell computer to treat that following character as a search 
character. 

Regex meta characters: 

\s: matches any whitespace character such as space and tab. 

\S: matches any non whitespace characters. 



\d: matches any digital characters. 

\D; matches any non digital characters. 

\w: matches any word characters. 

\W; matches any non word characters. 

Examples: 

1. Mobile number start with 8 or 9 and total digit =10. 

[8 9] [0 - 9]{9} 

2. First character uppercase, contains lowercase, only one digit allowed 
in between. 
[A - Z] [a - z]+ [0 – 9] [a – z, A - Z] + 

3. Email ID – Aditya123@gmail.com 
 
First email can be divide into three parts  
Part1 – Aditya123 
Part2 – gmail 
Part3 – com, in  
 
[A -Z, a – z,0 – 9, _ \-] + [@] [a – z] + [\.] [a – z]{2,3} 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Finite State Automate: 
 

A Finite State Automaton (FSA), also known as a Finite State Machine 
(FSM), is a computational model used in computer science to represent and 
control execution flow. It consists of a finite number of states, transitions between 
those states, and actions. 
Finite automata come in deterministic (DFA) and non-deterministic (NFA), They 
are widely used in text processing, compilers, and network protocols. 

How it works 

 Starts in one initial state (called the start state). 
 It reads input symbols one at a time (like letters or numbers). 
 Based on the current state and the input symbol, it moves to another state 

using a rule (called a transition). 
 After reading all the input, if it ends in a final state (accepting state), the 

input is said to be accepted. 
 Otherwise, the input is rejected. 

Formal Definition: 

A Finite State Automaton is defined as a 5-tuple: 

FSA = (Q,Σ ,q0,F, δ) 

Where: 

 Q: A finite set of states 

 Σ (Sigma): A finite set of input symbol 

 q₀: The initial state  

 F: A set of final states (F ⊆ Q) 

 δ (delta): A transition function δ: Q×Σ→Q 

Types of Finite Automata 

There are two types of finite automata: 

 Deterministic Finite Automata (DFA) 

 Non-Deterministic Finite Automata (NFA) 

Deterministic Finite Automata (DFA): 

A DFA is represented as {Q, Σ, q, F, δ}. In DFA, for each input symbol, the 
machine transitions to one and only one state. DFA does not allow any null 



transitions, meaning every state must have a transition defined for every input 
symbol. 

 In DFA given the current state we know that next state will be. 
 It has only one unique next state. 
 It has no choice. 
 It is a simple and easy to design. 

Formal Definition: 

DFA consists of 5 tuples: {Q, Σ, q, F, δ}.  

 Q: set of all states. 

 Σ: set of input symbols. 

 q: Initial state. 

 F: set of final state (F ⊆ Q) 

 δ: Transition Function, defined as δ: Q X Σ --> Q. 

 

Transition table  

State\ a b 

q0 q1 q0 

q1 q1 q0 

 

Non-Deterministic Finite Automata (NFA): 

A Nondeterministic Finite Automaton (NFA) is a type of finite state machine used 
in computational theory and natural language processing. Unlike a DFA, an NFA 
allows multiple possible transitions for a given state and input symbol, including 
transitions without any input (called ε-transitions). 



 It can transition to multiple states for the same input. 

 It allows null (ϵ) moves, where the machine can change states without 
consuming any input. The next state may be chosen random.  

Formal Definition: 

An NFA is a 5-tuple: 

NFA= {Q, Σ, q, F, δ} 

Where: 

 Q: A finite set of states. 

 Σ (Sigma): A finite set of input symbols (alphabet) 

 q: The initial state. 

 F: A set of accepting (final) states (F ⊆ Q) 

 δ (delta): A transition function: δ: Q×(Σ∪{ε})→2Q 

 

Transition table 

State a b 

q0 {q0,q1} q0 

q1 φ φ 

 

 

 

 

 



English morphology: 

Morphology is the study of words morpheme are the minimal units of words that 
have a meaning and cannot be sub divided further. There are mainly 2 types free 
and bound. Free morpheme occur alone and bound morpheme must occur with 
another morpheme. 

For ex: free morpheme is “bad” and on ex of bound morpheme is “ly” it is bound 
although it has meaning it cannot stand alone. It must be attached to another 
morpheme to produce a word. 

Free morpheme: bad 

Bound morpheme: ly 

Word: badly 

When we talk about words, there are two groups lexical or content and function 
words or grammatical. 

Lexical or content: There are open class words and include nouns, verbs, 
adjectives and adverbs. New word can regularly be added to this group. 

Function word or grammatical: There are closed word are conjunctions, 
prepositions, article and pronouns and new words cannot be (or) rarely added to 
this class. 

Affixes are often the bound morpheme, this group include prefix, suffix, infixes 
and circumfix. 

Prefixes are added to the beginning of another morphemes 

Suffixes are added to the end. Following are ex of each of there  

Prefix: re- added to produce redo. 

Suffix: -or added to edit produce editor. 

Infix: -um- added to fikas produce fumikas in Bontoc. 

Circumfix: ge--- t is added to lieb to produce geliebt in German. 

There are two categories of affixes: derivational and inflectional the main 
difference between the two is that derivational affix are added to morpheme to 
form new words that may or may not be the some part of speech and inflectional 
affixal are added to the end of an existing word for purely grammatical reasons. 

English morphemes 



A: Free 

1.open class. 

2. closed class.  

 B: Bound  

1. Affix 
a. Derivational  
b. Inflectional. 

2. Root  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Transducers or lexicon and rules: 

A lexical transducer is a special type of finite-state machine that is used in 
language processing to convert inflected or surface forms of words into their basic 
or lexical forms, and vice versa. It was first introduced by Korhonen, Kaplan, and 
Zaenen in 1992. In simple terms, it acts like a translator between how a word 
appears in a sentence (surface form) and its base form with grammatical tags 
(lexical form). This is useful in morphological analysis and generation. 

Lexicon: 

The lexicon is a list of base words (root forms) along with information about their 
meanings and grammatical behaviour. Each word in the lexicon has a canonical 
form and a set of tags that describe its grammatical features like tense, number, 
person, etc. 

Rules: 

Rules define how words change from their base (lexical) form into their surface 
form. These rules are often morphological, like adding suffixes for tense or 
changing spellings for conjugation. 

Example (French): 

For example, the French surface word "veut" (which means "wants") can be 
analysed using a lexical transducer and matched to its lexical form: 
vouloir + IND + PR + SG + P3 

 vouloir = verb root (to want) 

 IND = indicative mood 

 PR = present tense 

 SG = singular 

 P3 = third person 

 



 Circles represent the states and arcs represents the pair of symbols: a lexical 
symbol and a surface symbol Sometimes the lexical and surface symbols are 
the same (e.g., v:v), Sometimes they differ (e.g., o:e). 

 Finite state transducers are bidirectional. The same transducer can be used for 
analysis (veut -> voulor +IND + PR+SG+P3) as well as generation (voulor 
+IND + PR+SG+P3 - > veut). 

 Analysis and generation different only with the respect to the choices of the 
input side (surface or lexical). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Tokenization: 

Tokenization is a fundamental step in Natural Language Processing (NLP). It 
involves dividing a Textual input into smaller units known as tokens. These 
tokens can be in the form of words, characters, sub-words, or sentences. used to 
convert unstructured text into a structured format that machines can easily 
analyze and understand. 

 Involves dividing a string or text into a list of smaller units known as tokens. 
 A tokenizer breaks unstructured text into smaller parts, treating each part as a 

separate piece of information. 
 Tokens: Words or Sub-words in the context of natural language 

processing. Example: A word is a token in a sentence, A character is a token 
in a word, etc. 

 Application: Multiple NLP tasks, text processing, language modelling, 
and machine translation 
 

Types of Tokenization: Tokenization can be classified into several types based 
on how the text is segmented 

1. Word Tokenization: 
Word tokenization is the most commonly used method where text is 

divided into individual words. It works well for languages with clear word 
boundaries, like English.  

     Another word of word tokenization is white space tokenization 
     For example 
     Input: ["Machine learning is fascinating"] 
     Output when tokenized by word: ["Machine", "learning", "is", "fascinating"] 
2. Character Tokenization: 

In Character Tokenization, the textual data is split and converted to a 
sequence of individual characters. This is beneficial for tasks that require a 
detailed analysis, such as spelling correction or for tasks with unclear 
boundaries. It can also be useful for modelling character-level language. 
For example 
Input  ["You are helpful"] 
Output when tokenized by characters: ["Y", "o", "u", " ", "a", "r", "e", " ", "h", 
"e", "l", "p", "f", "u", "l"] 

3. Punctuation-based Tokenization: 
Punctuation-based tokenization splits text into tokens by separating words 

and punctuation marks. This method treats punctuation (like commas, 
periods, question marks, etc.) as individual tokens instead of combining them 



with words. It helps in preserving the meaning and structure of a sentence 
during text processing, which is useful in tasks like sentiment analysis and 
grammar correction. 
For example: 
Input ["Hello, how are you?"] 
Output ["Hello", ",", "how", "are", "you", "?"] 

4. Sub word Tokenization: 
This strikes a balance between word and character tokenization by 

breaking down text into units that are larger than a single character but smaller 
than a full word. This is useful when dealing with morphologically rich 
languages or rare words. 
For example 
Time table - ["Time", "table"]  
Rain coat - ["Rain", "coat"] 
Run way - ["Run", "way"] 
Sub-word tokenization helps to handle out-of-vocabulary words in NLP tasks 
and for languages that form words by combining smaller units. 

5. Sentence Tokenization: 
Sentence tokenization is also a common technique used to make a division 

of paragraphs or large set of sentences into separated sentences as tokens. 
This is useful for tasks requiring individual sentence analysis or processing 
For example: 
Input  ["He is here. She left."] 
Output ["He is here.", "She left."] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Detecting and correcting spelling errors: 

Spelling correction in natural language processing involves detecting and 
correcting misspelled words in text. It is a process of detecting and some times 
providing suggestions for incorrectly spelled words in the text. In computing spell 
checker is an application program that flags word in a document that may not be 
spelled correctly. 

This is typically achieved through combination of techniques, including 
dictionary lookups, error model-based approaches, and machine learning 
algorithms. The goal is to identify and correct errors like real-word errors 
(misused words) and non-word errors (typos). 

 Real-word errors: Those error words that are acceptable words in the 
dictionary. 

 Non-word errors: Those error words that are cannot be found in the 
dictionary. 

 

Detection of spelling errors: 

1. Dictionary lookup technique: In this dictionary lookup technique is used 

which checks every word of input text for its presence in dictionary. If that 

word present in the dictionary then it is a correct word otherwise it is put into 

the list of error words. 

2. Language modelling: More advanced techniques involve building language 

models e.g., N-gram language models also widely used in error detection. 

These models evaluate the probability of a word appearing a given context by 

analyzing the frequency of a word sequences. If a sequence is statistically 

unlikely, it may indicate a real-word error. 

3. Part-of-speech (POS): part-of-speech tagging helps find grammar mistakes 

by checking how words are used in a sentence. For example, if a verd is used 

where a noun should be, it can be flagged as a error. 

 

 



Correction of spelling errors: 

1. Minimum edit distance: This technique suggests replacement words that are 

closest in spelling to the detected error, based on the fewest number of edits 

needed to reach a valid word. While simple, it is very effective for common 

typographical mistakes. 

2. Contextual spelling correction: Contextual spelling correction takes this a 

step further by using advanced language models like BERT or GPT. These 

models consider the surrounding words and suggest corrections that make 

sense in the given context, which is especially useful for real-word errors 

(e.g., “their” vs. “there”). 

3. Similarity key technique: The Similarity Key Technique is a method where 

each word (or string) is changed into a special code, called a key. Words that 

are spelled in a similar way will get similar keys. This helps in finding and 

correcting spelling mistakes, because if two words have similar keys, they are 

likely to be similar or related. 

4. Rule-based correction: Rule-based correction methods use fixed grammar 

rules to correct common mistakes. This method is often used in specific fields 

where the types of errors are already known. 

Tools and Libraries: 

TextBlod: A python library that provides a simple API for common NLP tasks, 

including spell checking. 

SpellChecker: Another python library that focuses specifically on spelling 

correction. 

SymSpell: An efficient algorithm for spelling correction, available in python. 

Spark NLP: A library for NLP tasks, including spell checking built on Apache 

Spark. 



Minimum edit distance: 

Minimum Edit Distance (MED) is a technique used in Natural Language 

Processing (NLP) to find how similar two strings (words or sentences) are. It 

measures the minimum number of operations required to convert one string into 

another. 

Minimum edit distance between two strings str1 and str2 is defined as the number 

of insert/ delete/ substitute operations required to transforms str1 and str2. 

Common Operations: 

1. Insertion – Insert any character before or after any index. 

2. Deletion – Remove a character. 

3. Substitution – Replace one character with another 

Example: str1 = “ab”, str2 = “abc” the making on insert operation od char (c) on 

str1 transforms str l into str 2. Therefore edit distance between str 1 and str 2 is 1. 

Input: s1 = "geek", s2 = "gesek" 

Output: 1 

Explanation: We can convert s1 into s2 by inserting an 's' between two 

consecutive 'e' in s1. 

Input: s1 = "gfg", s2 = "gfg" 

Output: 0 

Explanation: Both strings are same. 

Input: s1 = "abcd", s2 = "bcfe" 

Output: 3 

Explanation: We can convert s1 into s2 by removing 'a', replacing 'd' with 'f' 

and inserting 'e' at the end.  

 



N-grams: 

N-grams are defined as the contiguous sequence of n items that can be extracted 
from a given sample of text or speech. The items can be letters, words, or base 
pairs, according to the application. The N-grams typically are collected from 
a text or speech corpus. 

N-grams are classified into different types depending on the value that n takes. 
When n=1, it is said to be a unigram. When n=2, it is said to be a bigram. 
When n=3, it is said to be a trigram. 

Unsmoothed N-gram: 

Unsmoothed n-gram models calculate the probability of word sequences based 
only on their observed frequencies in the training data 

Unigram: A model that calculates the probability of a single word based on 
how often it appears in the corpus. 

 

Data: “The dog barks. The cat sleeps. The dog runs. The cat jumps.” 

Total words =12 

Vocabulary: {“The”, “dog”, “barks”, “cat”, “sleeps”, “runs”, “jumps”} = 7 

P (dog) = 2/10 = 0.1666 

P (Apple) = 0/12 = 0 (zero probability) 

Bi gram: 

In the bigram model, we calculate the probability of a word b given the previous 
word a. It assumes that the current word depends only on the word immediately 
before it. 

 

Data: “The dog barks. The cat sleeps. The dog runs. The cat jumps.” 

Total words =12 

Vocabulary: {“the dog”, “dog barks”, “barks the”, “the cat”, “cat sleeps”, “sleeps 
the”, “dog runs”, “runs the”, “cat jumps”} = 9 



P (dog ∣ the) = count (The, dog) / count (The) = 2/4 = 0.5 

P (jumps ∣ dog) = 0/2 = 0 (zero probability)  

Tri gram:  

In the trigram model, we calculate the probability of a word c based on the two 
previous words, a and b. It assumes that a word depends on the last two words 
only. 

 

Data : “The dog barks. The cat sleeps. The dog runs. The cat jumps.” 

Total words =12 

Vocabulary: {“The dog barks”, “dog barks the, “barks the cat”, “The cat sleeps”, 
“cat sleeps the”, “sleeps the dog”, “The dog runs”, “dog runs the”, “runs the 
cat”, “The cat jumps”} = 10 

P (barks ∣ the, dog) = Count (the, dog, barks) / Count (the, dog) = ½ = 0.5 

P (sleeps ∣ the, dog) = 0/2 = 0 (zero probability)  

 

These models are simple and useful for understanding basic language patterns. 
However, they have a major drawback: if an n-gram has never appeared in the 
training data, its probability is zero, even if it’s a valid phrase.  

Therefore, unsmoothed n-grams are mainly used for educational purposes or as a 
base model, while practical systems apply smoothing techniques to handle unseen 
n-grams and improve accuracy. 

 

 

 

 

 

 

 



Smoothing: 

Smoothing in Natural Language Processing (NLP) is a method used to fix 
the problem of getting zero probability for word combinations that the model 
hasn’t seen before. When a language model comes across a sentence or phrase 
that wasn't in its training data, it gives it a probability of zero, which can cause 
problems in tasks like text prediction or machine translation.  

Smoothing helps by slightly adjusting the probabilities so that even unknown or 
new word combinations still get a small chance, instead of being completely 
ignored. Without smoothing, unseen word combinations are assigned a 
probability of zero, which can cause the entire sentence probability to become 
zero. Overall, smoothing is essential for building accurate and reliable NLP 
systems. 

Types of smoothing  

1. Add one smoothing (Laplace): 

The easiest way to apply smoothing is to add one to all n-gram counts before 
converting them into probabilities. This means even unseen word combinations 
will get a count of 1 instead of 0. This method is called Laplace smoothing.  

While it's not very effective for modern language models, it helps us understand 
how smoothing works and is still useful for simpler tasks like text classification. 

 

Count(a,b) = how often "a b" appears together 

Count(a) = how often "a" appears as the first word in a Unigram 

V = vocabulary size (total unique words) 

Example: 

Data: “The dog barks. The cat sleeps. The dog runs. The cat jumps.” 

Total words =12 

Vocabulary: {“the dog”, “dog barks”, “barks the”, “the cat”, “cat sleeps”, “sleeps 
the”, “dog runs”, “runs the”, “cat jumps”} = 9 

 



 

 

2. Add-K smoothing: 

Add-k smoothing is like add-one smoothing, but instead of adding 1 to each 
count, we add a smaller value like 0.5 or 0.1. This way, we move less probability 
to unseen word pairs. The value of k can be chosen by testing different values on 
a development set. While add-k smoothing works well for some tasks like text 
classification, it is not very effective for language modelling. 

 

Count(a,b) = how often "a b" appears together 

Count(a) = how often "a" appears as the first word in a Unigram 

V = vocabulary size (total unique words) 

k = a small positive constant (e.g., 0.1 or 0.5) 

Example: 

 

Interpolation: 

Sometimes, a language model doesn't find a 3-word combination (trigram) in the 
training data. Instead of giving zero probability, we can look at shorter 
combinations like 2-word (bigram) or even single words (unigram). This method 
is called interpolation.  

In interpolation, we combine the probabilities of the trigram, bigram, and unigram 
using weights. This helps the model make better guesses by mixing different 
levels of context instead of relying on just one. 

 

Count(a,b) = how often "a b" appears together 



Count(a) = how often "a" appears as the first word in a Unigram 

Count(b) = how often "b" appears as the first word in a Unigram 

PML = maximum likelihood estimate (regular probability from counts) 

λ1+λ2 =1 (they are weights) 

N = Total number of tokens (words) in the corpus 

Example: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Interpolation and backoff: 

Interpolation: 

Sometimes, a language model doesn't find a 3-word combination (trigram) in the 
training data. Instead of giving zero probability, we can look at shorter 
combinations like 2-word (bigram) or even single words (unigram). This method 
is called interpolation.  

In interpolation, we combine the probabilities of the trigram, bigram, and unigram 
using weights. This helps the model make better guesses by mixing different 
levels of context instead of relying on just one. 

 

Count(a,b) = how often "a b" appears together 

Count(a) = how often "a" appears as the first word in a Unigram 

Count(b) = how often "b" appears as the first word in a Unigram 

PML = maximum likelihood estimate (regular probability from counts) 

λ1+λ2 =1 (they are weights) 

N = Total number of tokens (words) in the corpus 

Example: 

Data: “The dog barks. The cat sleeps. The dog runs. The cat jumps.” 

Total words =12 

Vocabulary: {“the dog”, “dog barks”, “barks the”, “the cat”, “cat sleeps”, “sleeps 
the”, “dog runs”, “runs the”, “cat jumps”} = 9 

 

Backoff: 

Backoff is a smoothing technique used when an n-gram (like a trigram) has zero 
count in the data. In such cases, the model "backs off" to a lower-order n-gram 
(like a bigram or unigram) until it finds a match.  

 If the trigram exists in the data, we use it. 

 If not, we "back off" and use the bigram. 



 If the bigram is also not found, we finally back off to the unigram. 

We only use a lower-order n-gram when the higher-order one is missing or has 
zero count. 

To ensure proper probability distribution, traditional backoff methods apply 
discounting to higher-order n-grams, saving some probability for lower orders. 
However, a simpler method called Stupid Backoff skips discounting. Instead, if a 
higher-order n-gram is missing, it directly backs off to a lower-order n-gram and 
multiplies its score by a fixed weight (like 0.4). While this doesn't form a true 
probability distribution, it's fast and works well for large datasets. 

 

λ= fixed weight (e.g., 0.4) 

N = total number of words in the corpus 

Example: 

 

 

 

 

 

 

 

 

 

 

 

 

 



Word classes: 

In Natural Language Processing (NLP), word classes (also known as parts of 
speech (POS)) refer to the grammatical categories that words belong to based on 
their roles in sentences. Understanding word classes is fundamental in many NLP 
tasks like POS tagging, syntactic parsing, information extraction, and machine 
translation. 

1. Noun (NN) 

Nouns are words that name people, places, things, or ideas. Ex: cat, India, 
house. 
Example: Ravi went to the market. 

2. Pronoun (PRP) 

Pronouns replace nouns to avoid repetition. Ex: he, she, they, them. 
Example: He is a doctor. 

3. Verb (VB) 

Verbs describe an action, event, or state of being. Ex: run, write, sit, walk.  
Example: She runs every morning. 

4. Adjective (JJ) 

Adjectives describe or modify nouns to give more information. Ex: beautiful, 
large, smart. 
Example: He is a smart boy. 

5. Adverb (RB) 

Adverbs modify verbs, adjectives, often showing manner, time. Ex: quickly, 
slowly, silently. 
Example: She speaks slowly. 

6. Preposition (IN) 

Prepositions show the relationship between a noun/pronoun and other words. 
Ex: in, on at, under. 
Example: The book is on the table. 

7. Conjunction (CC) 

Conjunctions join words, phrases, or clauses. Ex: and, but, or. 
Example: I want tea and snacks. 

 



8. Interjection (UH) 

Interjections express sudden emotions or feelings. Ex: wow, hey, oh. 
Example: “Wow! That’s amazing.” 

9. Determiner (DT) 

Determiners are used before nouns to specify quantity or reference. Ex: the, an, 
a, this, those. 
Example: This apple is sweet. 

10. Numeral (CD) 

Numerals indicate numbers or order. Ex: one, two, 3rd. 
Example: She has two dogs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Part of speech tagging: 

Parts of Speech (PoS) tagging is a core task in NLP, It gives each word a 
grammatical category such as nouns, verbs, adjectives and adverbs. Through 
better understanding of phrase structure and semantics, this technique makes it 
possible for machines to study human language more accurately. 

PoS tagging is essential in many NLP applications like machine translation, 
sentiment analysis and information retrieval. It serves as a link between language 
and machine understanding, enabling the creation of complex language 
processing systems. 

POS Tag Meaning Example 

NN Noun (singular) dog, school, computer 

NNS Noun (plural) dogs, schools 

VB Verb (base) go, run, eat 

VBD Verb (past) went, ran, ate 

VBG Verb (gerund) going, running, eating 

JJ Adjective brown, beautiful, quick 

RB Adverb quickly, very 

PRP Pronoun he, she, it, they 

IN Preposition in, on, at, by 

DT Determiner the, a, an, this 

CC Coordinating Conjunction and, but, or 

UH Interjection wow, oh, hey! 

 

Example: "The quick brown fox jumps over the lazy dog." 

 "The" is tagged as determiner (DT) 

 "quick" is tagged as adjective (JJ) 

 "brown" is tagged as adjective (JJ) 



 "fox" is tagged as noun (NN) 

 "jumps" is tagged as verb (VB) 

 "over" is tagged as preposition (IN) 

 "the" is tagged as determiner (DT) 

 "lazy" is tagged as adjective (JJ) 

 "dog" is tagged as noun (NN) 

 

Workflow of POS Tagging in NLP  

1. Tokenization: 
The input text is split into individual words or subwords, enabling word-
level analysis. 

2. Loading a language model: Tools like NLTK  requires a pre-trained 
language model to perform POS tagging. These models are trained on large 
datasets and provide insights into the grammatical rules and structure of 
the language. 

3. Text Preprocessing: The text is then cleaned to improve accuracy. 
Common preprocessing steps include converting text to lowercase, 
removing special characters and eliminating irrelevant content. 

4. Syntactic Analysis: The sentence is parsed to understand grammatical 
roles, helping prepare for accurate POS assignment. 
 

5. POS tagging: each token is labelled with its appropriate part of speech 
using context and syntax. 

 
6. Result evaluation: The output is checked for accuracy and any tagging 

errors are corrected if needed. 
 
 
 
 
 
 
 
 



Rule based POS tagging: 

Rule-based POS tagging assigns grammatical tags to words using a 
predefined set of rules, as opposed to machine learning-based methods that 
require training on annotated corpora. These rules are crafted based on 
morphological features (like word endings) and syntactic context, making the 
approach highly interpretable and transparent. 

Example 

a rule might specify that words ending in “-tion” or “-ment” should be tagged as 
nouns, based on common suffix patterns found in English. 

 Rule: Assign the POS tag "Noun" to words ending in -tion or -ment. 

 Text: "Her dedication and commitment inspired the entire management team." 

Tagged output: 

 "Her" is tagged as Pronoun (PRP) 
 "dedication" is tagged as Noun (NN) 
 "and" is tagged as Conjunction (CC) 
 "commitment" is tagged as Noun (NN) 
 "inspired" is tagged as Verb (VB) 
 "the" is tagged as Determiner (DT) 
 "entire" is tagged as Adjective (JJ) 
 "management" is tagged as Noun (NN) 
 "team" is tagged as Noun (NN) 

 In this case, the rule-based tagger correctly identifies "dedication," 
"commitment," and "management" as nouns by applying suffix-based rule. Even 
though it's simple, this example shows how rule-based systems can understand 
many language patterns by using clear and organized rules. 

 

 

 

 

 



Stochastic and Transformation-based tagging: 

Transformation Based tagging 

Transformation-Based Tagging is a method used to improve part-of-speech tags 
by applying correction rules step by step. It doesn’t depend on fixed grammar 
rules like rule-based taggers or probabilities like statistical taggers. Instead, it 
starts with basic tags and then makes corrections using rules that look at the 
context of each word. 

Example rule: "If a word is tagged as a verb, but it comes after 'the', change it to 
a noun" 

Example Sentence: 

"The walk was long " 

Initial tags (before rule is applied): 

The – determiner (DT) 

Walk – verb (VB) 

was – verb (VB) 

long – adverb (RB) 

Transformation rule applied:  

If a word is tagged as VB (verb) but comes after "the", change it to NN (noun). 

Final Tags (after rule applied): 

The – determiner (DT) 

Walk – noun (NN) 

Was – verb (VB) 

Long – adverb (RB) 

Example sentence 2: 

"Can birds fly?" 

Initial tags (before rule is applied): 



Can – modal verb (MD) 

Birds – noun (NN) 

Fly – noun (NN) 

Transformation rule applied:  

If a word is tagged as NN (noun) but comes at the end of a question starting with 
"Can", change it to VB (verb) 

Final Tags (after rule applied): 

Can – model verb (MD) 

Birds – noun (NN) 

Fly – verb (VB) 

Stochastic POS tagging:  

Stochastic POS tagging (also called statistical tagging) is a method in 
computational Grammatical Science that uses probability to decide the correct 
part of speech for each word in a sentence, like noun, verb, or adjective. Unlike 
rule-based methods that use fixed grammar rules, statistical tagging learns from 
examples. It studies large amounts of already tagged text and finds patterns using 
machine learning. 

These models calculate the chance of a tag being correct for a word based on the 
words around it. This helps them handle confusing cases and understand complex 
grammar. 

 

 

 

 

 

 

 



Issues in POS tagging: 

1. Ambiguity: 

Ambiguity happens when a word can have more than one part of speech, 
depending on the context. This makes it hard for the tagger to choose the correct 
tag. 

Example: 

 “book” 

 Verb: "Can you book a ticket?" 

 Noun: "I read a book." 

 “play” 

 Noun: "The play was great." 

 Verb: "They play outside." 

The tagger needs to look at the surrounding words to decide the correct tag. 

2. Out of vocabulary: 

Out-of-Vocabulary (OOV) words are words that do not appear in the 
training data of a POS tagger. These can include new terms, foreign words, slang, 
or names that the model has never seen before.  

When a tagger encounters an OOV word, it struggles to assign the correct part of 
speech, because it has no past examples to learn from. This often leads to incorrect 
tagging, which can affect the accuracy of downstream NLP tasks. 

Example: “He created a new app called Zyntora.” 

 OOV Word: “Zyntora” (a made-up product name) 
 Issue: The tagger may not know if it's a noun, a verb, or something else. 

3.  Errors in rule and statistical models: 

Rule-based POS taggers can make errors if their rules are too strict or don’t cover 
all cases. They often fail with new word usages. Statistical taggers make mistakes 
when they rely too much on training data. If a word is rare or has multiple 
meanings, the model may choose the wrong tag. 



Example:  

Sentence: "They can fish in the lake." 

 Rule-based error: Tags "can" as a verb, and "fish" as a noun 

 Statistical error: Tags "can" as a noun (like a tin can), and "fish" as a 
verb (like swimming). 

Correct tags: 

 "can" – Modal verb 

 "fish" – Main verb 

4.  Multi word expressions: 

MWEs are phrases made of two or more words that act as one meaning, like 
idioms or phrasal verbs. Their meaning is often not clear from the individual 
words. This makes POS tagging harder, because tagging word by word may miss 
the actual meaning of the whole phrase. 

Example: Sentence: "He kicked the bucket." 

o He – Pronoun (PRP) 

o kicked – Verb (VB) 

o the – Determiner (DT) 

o bucket – Noun (NN) 

 Literally, this makes sense. But "kick the bucket" is an idiom meaning “to die.” 

So, the tagger should ideally treat "kick the bucket" as a single verbal 
expression rather than tagging each word individually with its literal meaning. 

 

 

 

 



Hidden Markov and maximum entropy model: 

In Natural Language Processing (NLP), we use different types of models to 
understand and process human language. Two important models are the Hidden 
Markov Model (HMM) and the Maximum Entropy Model (MaxEnt). These 
models help computers to do tasks like part-of-speech (POS) tagging, named 
entity recognition, speech recognition, and many others. 

Hidden Markov Model (HMM): 

Hidden Markov Model is a statistical model used to predict hidden patterns or 
tags based on observed data, like words in a sentence. It is commonly used in 
NLP tasks such as POS tagging, where the system guesses the correct tag 
sequence using probabilities. 

 It tries to find the best tag (like noun or verb) for each word. 
 It uses the idea that the next tag depends on the previous one. 
 It looks at how often a tag follows another tag. 

 Useful for tasks like POS tagging, name finding, and speech recognition. 

 Easy to understand, but may not work well with complex sentences. 

Example: 

Sentence “Birds fly” 

Observed words (input): "Birds", "fly" 

Possible tags: Noun (N), Verb (V) 
We check all tag combinaƟons: 

 Noun → Verb (Birds/N, fly/V) 

 Noun → Noun (Birds/N, fly/N) 

HMM calculates which tag path has the highest total probability. 

The best option will be: Birds/Noun → fly/Verb 

Advantages: 

 Simple and easy to implement. 



 Works well with small datasets. 

Disadvantages: 

 Makes strong assumptions (only looks at the previous tag). 

 Cannot handle complex context or long-range information. 

Maximum Entropy Model: 

The Maximum Entropy model is used to predict the most suitable tag or label for 
a word based on useful clues or features from the sentence. It works on the idea 
of making no extra assumptions — only using the information available. 

 It is a model that directly tries to guess the correct tag or label for a word. 
 It looks at useful clues like the word itself, the word before it, capital letters, 

endings like “-ing” or “-ed”, etc. 
 It learns which clues are important by using training data. 
 It is used in tasks like part-of-speech tagging, text classification, and f 

Named Entity Recognition (NER). 
 It is more accurate and flexible, especially when we have more data to train 

it. 

Example: Sentence: “Apple is sweet” 

 For the word “Apple”, MaxEnt looks at features like: Is the word 
capitalized? Is it the first word in the sentence? 

 Based on these features, it might predict the tag: Proper Noun (NNP) 

 For “sweet”, it might check if it comes after “is”, and guess: Adjective (JJ) 

Advantages: 

 Can use many types of features. 

 More flexible and accurate in many cases. 

Disadvantages: 

 Needs more data and feature design. 

 Takes longer to train than HMM. 


